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ABSTRACT

Let 3 be some standard set theory (Eg. Zermelo Fraenkel or Von Neumann-
Bernays-Godel) which does not contain the axiom of choice. Using 3, as the
underlying set theory, we shall study operations on infinite cardinals, closely
related to exponentiation, and compare the results with known results about
exponentiation.

Introduction

Let £ be some standard set theory (Eg. Zermelo-Fraenkel or Von Neuman-
Bernays-Godel) which does not contain the axiom of choice. Using X as the
underlying set theory, we shall study operations on infinite cardinals, closely
related to exponentiation, and compare the results with known results about
exponentiation.

The paper is divided into three sections. The first contains notation and pre-
liminary remarks; the second is based on the work of Tarski [7], [18], and [19];
and the third is based on the work of Specker [14] and Kruse [5] and [6].

1. We assume the reader is familiar with the standard notation of set theory.
In particular we shall use the following notation:
M < N iff there is a 1-1 function mapping M into N. (IM[ = lN[).

E(M) is the set of all finite subsets of M. If | M| = m then, | E(M)| = e(m).
R(M) = {«|« is an ordinal number and o X M}.

* T should like to take this opportunity to thank both my husband, Herman and my son,
Arthur, for their help in preparing this paper.
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If |[M|=m, | R()| = N(m). (Hartog’s aleph.)
M <* Nif M = ¢ or there is a function mapping N onto M.
If [M|=mand |[N| =nthen m <*niff M 3*N.

We shall also assume the following properties of <*, ¥, and e. (See [7]
and [3]).
THEOREM 1.1.
(@) If m < n then m <*n.
(b) If m <*n then 2" < 27,
{c) If mis infinite, N(m) is the smallest aleph which is not < to m.
(d) If m and n are infinite then,
N(m +n) = 8(m)+ R(n) = R(m - n) = R(m)- N(n).
(&) If m is infinite, 8(m?) = X(m).
() N(m) £*2™.
(®) N(m) <*2°".
(h) x(xa) = Nesr1-
() Nour S*2°
() m<elm)<2".
(k) e(No) = N,.
) e(m+n) =-e(m)- e(n).
(m) R, e(m) = N, - e(km), for all ke w~ {0}, provided that every set with

cardinal number m can be linearly ordered.

Moreover, we shall assume familiarity with the standard Cohen models of set
theory in which the axiom of choice is false [2] pp. 136-142. (Alternatively, the
Fraenkel-Mostowski model [9].) Specifically, we shall use the following prop-

erties.

THEOREM 1.2.  If X is consistent, there exists a model of X in which every set

can be linearly ordered and there is an infinite cardinal number m with the

following properties:
(a) N, £* m. (Consequently, ¥, £ m.)
() 2m £ m+ N,.
(©) 2m* £ m? + N, m.

(d)
©)

n1+N0<2m+N0<3m+No<"'.
Norm< Room?> < Nymd < e,

Proor. We obtain the model by adding the following sets to the Cohen hier-
archy (see [2] p. 142):
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A = {a,,|m, new}, the a,, are generic subsets of w,

A, = {a,, |new},

M = {4,|meo},

N = {{4,,4,} | m,new}, and

R is a linear ordering of M of type 5, the order type of the rationals.

Let |M[= m. Then it is easy to show that if N, <*m then 8, < m. But
using Cohen’s method, it can be shown that the latter property implies a contra-

diction.

Parts (d) and (e) follow from (b) and (c) respectively, and (b) and (c) follow
from (a) and the definition of m.

Now, let LO(m), INF(m) and AC(e(m)) be the following three statements:

LO(m): Every set with cardinal number m can be linearly ordered. (The ordering
principle).

INF(m): There exists infinite cardinals p and ¢q such that m = p+g4.

AC(e(m)): There is a choice function on E(M), for all sets M of cardinality m.

Itis known that if ¥ is consistent neither of these three propositions are provable.
(To see this, omit the sets N and R in the construction of the model in the Proof
of 1.2.) It is also easy to show that ¥ <* m implies INF(m), LO(m) implies
AC(e(m)), and if m is infinite, LO(m) implies INF(m). In Sections 2 and 3 we
use LO(m) in the hypotheses of theorems where it would have been sufficient to
use AC(e(m)). (Referee’s comment) see Lemma 2.6 ff.

The following theorem is due to Tarski and Kuratowski [15] and [7].

THEOREM 1.3. N, =*m iff &, <27,
Proor. It follows from 1.1 (b) that if ¥y <* m then N, < 2™. The proof

the other way is given in [15] pp. 94-95.
The following implications clearly hold for all m > 0.

m =2m - Q" = 2"

i

Ng<m—2-2" =2,

But, if £ is consistent, the arrows do not go the other way. The proof of this
depends on the following result of Lauchli [8].

THEOREM 1.4. If m is infinite then (2°0™)° = 2¢™,

There exist models of £ in which e(m) is infinite but 8, £ e(m), [2].
2. We now make the following definitions.

DeriNiTioN 2.1, If M| =m and |N| =n,



Vol. 10, 1971 CARDINAL NUMBERS 507

(@) MW = {f|f:NIM}; |[MP|=m™,

(6) NM={uc M| |u| =n}; |M™| =m™.

© MM ={ucM||u|l<n}; |[M®P]=m™.

(d) M = {u c Ml |u| < n}; |M (<N>>|= m<<n)>'

MV is the set of all functions mapping N into M (|M"| = m"), while M®
is the set of all 1-1 functions mapping N into M.

The following lemma follows easily from 2.1.

Lemma 2.2.

(a) MW MY = pr<»

(o) M™ = MV

(©) M) P(M)

(d) If M; <M, then MP<M®, MM<MM M¥» <MY, and
MEN < MM

First, we shall study these pseudo-exponentiation operations for the case that
the exponent is finite. We have defined E(M) to be the set of all finite subsets of
M. We shall define F(M) to be the set of all finite sequences of elements of M
without repetition and FF(M) to be the set of all finite sequences of elements
of M.

DerINITION 2.3, If | M| = m,

() F(M) = [JM?, where M© = {}; | F(M)| = f(m).

(b) FF(M) = | J M’, where M° = {}; | FF(M)| = ff(m).
Some of the following results can be found in Ellentuck [3].

LemMA 24. If m >0,

(@) ff(m) = ff(ff(m)) = Wy ff(m).

(®) ff(m) = N, -e(m).

Proor. Ellentuck [3] p. 246.

LEMMA 2.5. If m is infinite, then m* < f(m) for all kew.

Proor. Let |M| = m. The lemma is true if k = 0 so suppose 1 £ kew.
Let v, w;, 12i<k, 1<j=2k be 4k? distinct elements of M and let
# = {ug,uy,+,u, > be any element of M*. Suppose u,, u,, ---,u;_y are all distinct
and u; = u; for 1 £i<j £ k. Thenreplace u; by the first vy, I = 1,2,---, 2k,
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which is distinct from wuy,u,,---,u,. Let wy, be the first wy, [ =1,2,---,2k,
which is distinct from wug,uy, -, 4.

Suppose the next repetition occurs at the j;-st coordinate and suppose i; is the
smallest i so that u; =u;, 1 £i<j, £k. Replace u;, by the first v, ,,
l=1,2,--,2k, which is distinct from u,,u,,---,u, and let w; , be the first
w1 I =1,2,--,2k, which is distinct from u,u,,--,u,. Continue this process
until all repetitions are eliminated.

Let us illustrate what is going on by an example. Suppose k =5 and
# = {Vy1,W11,911,011,W11p- Then we shall map u onto the element (v, wyq,
U125 U3y Uags Wags War, Wi >. The element {v;y, Wiy, 034, 015, V51> € M* would be
mapped on {v;y, Wy1, U125 Vi35 U215 Wag> Warp . SO the first subscript on the w’s
tells us which coordinates have been replaced and the first subscript on the v’s
tells us which element was there originally. Thus we have constructed a 1-1
mapping of M* into F(M).

In many of the following theorems we assume LO(m) in the hypothesis. A
typical way in which it is used is illustrated in the following.

LEMMA 2.6. LO(m) » (Vkew)m™ < m®.

Proor. The conclusion holds without LO(m) if m = 1 or k < 1. So suppose
both m and k are greater than 1. Suppose ‘Ml =mandletu={uy,u,, -, u} €
M™, Suppose R is a linear ordering of M and suppose also

ulRqu'“Ruk.
Then define ¢(u) = (uq,u,, -+, 4> It is easy to see that ¢ is a 1-1 mapping of
M™ into M®.,
Alternatively, to prove the lemma we could have used AC(e(m)) to define
$(u). For each ueM™ let
yiweu, Y weu ~ YW}, -, Yw)eu~ {1 (@), s Y- (W)}
Then let ¢(u) = Y (), -, ¥, (u))y. Thus, LO(m) is used as a substitute for
AC(e(m)).
LEMMA 2.7. LO(m) - (Yk € w)LO(m™).
PrOOF. Suppose |M| = m, then M™ can be linearly ordered, for example,

by the lexicographical ordering.

THEOREM 2.8. If LO(m) then each of the following are equivalent.
(1) No=m
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(2) e(m) = f(m)

(3) e(m) = ff(m).

Proor. Using 2.2(b) and 2.6, it is easy to show that (3) - (2). Clearly,
e(m) £ e(m) + 1 £ f(m). Thus, (2) implies N, < e(m), and this along with
LO(m) implies (1). Finally (1) implies

e(m) = e(m + Ny)
= Ny e(m) 1.1(k)D)
= ff(m). 2.4(b)
Therefore, (1) - (3).

Without using LO(m) we can prove the following:

THEOREM 2.9. If 1 <k <w then the following are equivalent.

(1) Ro=m

2 m*=m® and m>1.

PROOF. Suppose ¥, < m. Then it is easy to show that

m® < m* < (m + Rp)® = m®
(See Ellentuck [3] p. 255.) Thus (1) - (2).

Conversely, suppose (2) holds. Then, since m® < m® +1 < m*, it follows

from (2) that ¥, < m®. But this implies ¥, < m.

LEMMA 2.10. N, £ m— (Vkeoym* = T4 s;mP, where the s, are
Stirling numbers

.k i 41 N
_J* L j—i
= 2 0 e ()
Proor. For a proof of this for finite m see, for example, Harris [4] pp. 25-26.
The proof is essentially the same for infinite m.

Lemma 2.11. Ifjkewand m = jk +j + k thenj- m™< m™* 1| provided
that j,k # 0.

Proor. Suppose |M| =m and u € M with ‘u| =q, where g = jk+j+ k.
For alli £ g, oo g!
il{g—1i)
Thus, if i £ k, j+ g < g***1, provided that j 0. Therefore, for each i < k
there are j functions ¢;;, ¢,5,+,¢;; such that foreach I, 1 <1 < j, ¢, is 1-1,
D) = u™, R(dy) < w1, andif 1 £ j; <j, £ kthen

q
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'%(d’ij,)n*@((ﬁijz) = Q
Now we can construct j 1-1 functions from M™ to M™*! with pair-wise
disjoint ranges as follows: let X € M™!. Suppose v = X nu and |v| = i. Define,

Y (X) = du(w) U(u ~ v).

Then it follows from the definition of ¢, that foreach I,1 < I £ j, 2(¥) = M*]
AMY).c M* 1 ¥ is 1-1, and the P,’s have pairwise disjoint ranges.

COROLLARY 2.12. If m is infinite then for all j, ke w, jm™ < mik+11,
LemMa 2.13.  LO(m) — (Vke o)m®™ = k! - m™,

Proor. Ellentuck [3] p. 254.

LEMMA 2.14. If m is infinite then LO(m) - (Vke @)m* < m*+11,

Proor. If R, £ m, by 2.9, m* = m®. By 2.13, m® = k!m™. Thus, the
desired result follows from 2.12.
If ¥o£ m, by 2.10

sw-
]
M=

0]
Sjm
j=1

]

k

j=t
Therefore, it follows from 2.12 that there is an lew such that
mk < Im" < mi+11

COROLLARY 2.15. If m is infinite then LO(m) - (Vk e @)m* < e(m).

THEOREM 2.16. If LO(m), m > 1, and 1 < ke w then each of the following
are equivalent:

() m*=2m*

) m® = 2m®

(3) m* = 2

) m® = mlkl

(5) m*=mH,

Proor. First we note that (1) and (2) are equivalent because they each imply
N, < m which, by 2.9, implies m* = m™®. (Thus the equivalence of (1) and (2)
does not depend on the assumption LO(m)).

The fact that (2) and (3) are equivalent follows from 2.13 and the Tarski can-
cellation laws. ([7] p. 305 and [19]. If 1 < k < w then for all cardinals m and n
if km = kn then m = n.)
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To prove (5) = (4) - (3) = (5) use 2.6, 2.2(b), 2.13, and 2.9.

THEOREM 2.17. If LO(m), m is infinite, and k € w then each of the following
are equivalent.

(1) mk — mk+1

2 m® = pth

(3) m* = mtt1l

@) e(m) = m*.

ProoF. The proof that (1) and (2) are equivalent is similar to the proof that
(1) and (2) of 2.16 are equivalent and again does not use LO(m).

Suppose (2) holds. Then it follows from the monotonicity laws that for all j
such that 1 £ jeow,

) m® = j.-m®,
By 2.13, we obtain from (2),
kl-m™ = (k+ 1)1 mPHY
which implies, using (I) that
(k+ D m™ =k + 1)1 mBH1,
Thus (3) is obtained by using Tarski’s cancellation law.
Before proving (3) implies (4) it is convenient to prove first that (3) implies (2)

thus showing (1), (2) and (3) are all equivalent. First, we note that (3) implies
that forall i, j, 1 £ i, jeow,

(1) imM = .o,
Thus,
(k+ D m** =k + 1)1 - m™ 3)
= k!-m* (1)

Therefore (2) follows from (2.13).

By 2.15, m* < e(m) for all ke w. We shall show that (1) implies e(m) < m*.
It follows from (1) that m* = m**/ for all je w. Since (1) and (3) are equivalent,
it follows that m'™ = m™ ¥ for all je w. Therefore,

e(m) £ 1+m+mP 4 ... + RymH
= 1+m+m? 4. 4 m
< (k+ m™ [2.12]
= m 3)

= m [2.16].
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Finally, it follows from 2.15 that mt < mFtt < e(m). Thus, it is easy to see

that (4) implies (1).

COROLLARY 2.18. If LO(m), m is infinite, and k € w then each of the following
are equivalent:

() mt=mtt!

(2) e(m) = m®

3) e(m) = m*,

In © we can prove the following:

mt = mEeml

(mk)l — mkl.

The question arises whether we can prove similar laws for the other types of
exponentiation defined in 2.1. The following theorems answer these questions
in part.

THEOREM 2.19. If LO(m), m is infinite and 0 <k, lew then each of the
following are equivalent.

(1) mk+l — m[k+l]

@) m*t =,

Proor. It follows immediately from LO(m) that m™*1 < mi. m™M, We
shall show (1) » m™- W™ < m** 1, (1) implies

LSS R LY S
By 2.6,
M i < kot

Thus (1) - (2).

Conversely, suppose (2) holds. Let | Ml =mandletu={u;,uy, U, 0;,0,, U}
< M, and |u[ =k + 1. Suppose R linearly orders M and u;Ru,R --- Ru;Rv;Rv,R
-« Ry,. Define

¢1(u) = <{“1’“2a"‘,uk} > {quz,"',vz} >

¢2(u) = <{01:u29"':uk}, {ul’UZa""vl}>'

Then ¢, and ¢, are each 1-1 mappings of MU¥* into M™ x M and
A($1) N H(p,) = &. Thus

Ml < k1
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Therefore, (2) implies m™* 1 = 2m™**1 which, by 2.16, implies (1).
THeOREM 2.20. If LO(m), m is infinite and 1 <k, lew then each of the

following are equivalent:

(1) mkl — m[kl]

2) m* = (myH

(3) mtFl = (m[k])(l)

(4) mikl — (m(k))[l]

(5) m™ = (™Y

(6) m*® = (my"

We shall omit the proof of this theorem and the next since the techniques used
are similar to those used previously.

THEOREM 2.21. If m is infinite and 1 <k, le ® then each of the following
are equivalent.

1) No=m
(2) m(k"'l) — m(k)m(l)
(3) ’n(kl) — (m(k))(l).

It is easy to obtain similar results for m<*’ and m‘*”, but instead we shall
discuss pseudo-exponentiation when the exponent is infinite.

LemMA 2.22. If M is a set and S a hereditary system of subsets of M, (S
is called hereditary if every subset of an element of S is an element of S), then

if |Sl < ]M , there is a subset N = M such that N can be well-ordered and
N¢S.

Proor. Tarski [18], p. 178. We shall sketch the proof here because we want
to generalize the lemma slightly and use essentially the same proof.

Let ¢ be a 1-1 function mapping S into M. Define a function ¥ on the class
of ordinals such that for each ordinal o,

W) = {d)(‘{‘ a) if Y'aeS
u¢ M otherwise.

Let y be the smallest ordinal number § such that W(d) = u. Then since ¢ is 1-1,
¥ l yis 1-1, so ¥"y is a subset of M which can be well-ordered and ¥y ¢ S.

Let us call a system of sets ‘‘almost hereditary’’ if every well-ordered subset
of an element is an element. Then using the same proof as of 2.22 we can prove,

COROLLARY 2.23. If M is a set and S an almost hereditary system of subsets
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of M, then if ISI < |M|, there is a subset N< M such that N can be well-
ordered and N¢S.
The following theorem follows from 2.22.

THEOREM 2.24. If m > 1 then

(@) If n>2 and m = m then there is an aleph, X, such that X < m
and N < n.

(b) If n =2 and m™> = m then there is an aleph, W, such that ® < m
and N £ n. (See 2.13 for the definition of m™ and m<"™?.)

COROLLARY 2.25. If m > 1 and m‘™ = m then m is an aleph.
We shall next consider the relationship between m”, m™®, mt™, m<™  and m¢<™>.

THEOREM 2.26. Ifm = m? and 0 <n £ m then m" £ m™.

Proor. It follows from the hypothesis that m = m-n. Let IM | = m and
|N| = n. Then there is a 1-1 function ¢ such that

¢ MxN~ M.
If fe M"Y, define

¥(f) = {$(f(u),u) | ue N}

For each fe MY, ¥(f) € M and I‘P(f)l = n. Moreover, ¥ is 1-1. Therefore,
m" < mt".

29»

In the case that n is finite in 2.26, ““m = m*’* can be replaced by “m = 2m”’,

because in this case m = 2m implies m = n - m.

COROLLARY 227. If 0<m =2m and O<new then m"< m™,

COROLLARY 2.28. If m is infinite and new then m™ = m - m" = m.

Proor. The corollary is true if n=0,1. Suppose 1 <new. By 2.12,

2m < m"l, Consequently, m" = m implies m = 2m. So, by 2.27, m" < m",

[n]

Therefore, m™ = m implies m" = m.

THEOREM 2.29. If m is an aleph and 0 <n < m then m" < m™.

Proor. Suppose |M| =m, Ng & M, and |N0 = n. Let N be any subset
of M such that | N| = n. Define ¢(N) = fe M where f: N, ~ N and f pre-
serves order. Then ¢ is a 1-1 function mapping M™into M™, (See [11] Theorem
7.4.5).

THEOREM 2.30. If m is an aleph and 0<n < m then m" = m™ = m™,

PrOOF. 2.26, 2.29 and 2.2 (b).
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TBEOREM 2.31. If m is an aleph and O <n £ m then m™ £ m".

Proor. Let |M| =m, INl =n and suppose P< M, ]PI = p < n. Then
P-< N. Let N’ be the smallest initial segment of N such that P = N’. Let f'
be the 1-1 function which maps N’ onto P and preserves order. For ue N ~ N’
define f(u) = u, where u,eP. Let W(P) = f Uf’. Then ¥ is a 1-1 function
mapping M into M".

In the case that n is finite, we may replace “‘m is an aleph” in the hypothesis
of 2.31 by “LO(m)”.

COROLLARY 2.32. If LO(m), new and m is infinite then m™ < m".
THEOREM 2.33. If m is an aleph and 0 < n < m then

m" = m® = <> = il
Proor. By 2.30

1)) m" = m"® = m",
By 2.2 (a), m<™ = m™ + m™. So
In m" < m<7,

By 2.31, m™ < m"; by 2.29, m™ < m™; and by 2.2 (b) m™ £ m". So,
(I11) m" < mt 4 m® = m".

The theorem follows from (I), (II), and (III).

In the case the exponent is finite we get the following result.

THEOREM 2.34. If 0 <m = 2m, LO(m), and new then

m* = m®™ = m<> = i,

Proor. 2.16,2.32, and 2.2 (a).

A special case of the following lemma was originally proved by the author
(see 2.36) but subsequently the lemma was generalized by H. Rubin. We shall
give the more general result here.

Lemma 2.35. If ¥o-p £ n < m then m'™ £ m™,

Proor. Suppose |[M|=m, N <=M, |[N|=n, and |R| = p. Suppose also
that
M=Rxa)uQuUT, N=Rxw)ug

where the sets R x w, Q, and T are pairwise disjoint. For any <{u,k>eR x w
let f(u,k) = {u,2k) and let @’ be the set of all odd natural numbers.
Let P be any subset of M such that |P‘ = p. Define
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dP)=PNTHYUQ~P)URXYUf"PN(R xw)).

It is easy to see that ¢(P) = M and ¢ is 1-1. To complete the proof we must
show ]gb(P)I = n. First, I(;S(P)I < n because |Pﬂ T] <p |Q P| |Q|
IR X l = Ny p, and lf”Pm(R xa))l < ¥; - p. Therefore,

|6P)| < p+ Q]+ Nop + Rop = Ko p +[Q] = n.
On the other hand, ¢| (P) | n because [(Q P)u (R x {l}l [Q| and
|R x (0" ~ {1})| = Nop.

COROLLARY 2.36. If p < n £ m and either p is finite and Ny £ n, or pis an
aleph then m™ £ m™,

The following theorem is stated in Tarski [ 18] without proof. As far as we know
the proof has not been published.

THEOREM 2.37. If m>1, n =2 N, and m"™ = m then there is an aleph,
W, such that X < m but X £ n.

Proof. It follows from the hypothesis and 2.36 that m!” = m for all
p < nsuch that 1 £ p <w or pis an aleph. In particular, m!?! = m. By 2.12,
2m < mt). Thus m = 2m, so by 2.27, m* £ m'?), This implies m = m?.

Now it follows that

S={PcM||P|=n&(P|<o or|P|is an aleph)}

is an almost heredltary system of subsets of M such that |S [ = m. (Because if
PeS and |Pl = p, m¥ = m;so ‘S] m follows from the fact that m? = m.)
Therefore it follows from 2.23 that there is a subset A = M such that A can be
is an aleph such that |A| £ n and [A| = m.

COROLLARY 2.38. If m>1, n = N, and m™ = m then m" =m

Proor. In the proof of 2.37 we showed that under the given hypothesis,
m = m?. Thus the corollary follows from 2.26.

(n>

COROLLARY 2.39. If m>1,0<n =2n, and m™ = m then m™ = m and

My —

ProoF. Suppose n=2n and p <n. Then it is easy to see that

mP < m* = mi™ = m. (See the proof of 2.35 and of 2.37.) Thus, for all

(21 “my oy

p<n, m? =m and m = m?. Therefore, m™ =m and m

The following theorem follows directly from the definition of m[™

[m]

THEOREM 2.40. Ry, = mom™ > 1.
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THEOREM 2.41. If m >0 then
m=2m 2" =m" - Xy < m.

ProoF. Clearly m™ < 2™ . We shall show 0 < m = 2m — 2™ £ m'™, thereby
proving the first implication. Let M and N be sets such that |M | = lN l =m,
MAN=gand MUN~M. Let $: M~ N. For each u = M, define

Yu) = uu{xeN|x¢d"u}.
Then for u< M, ¥(u) € MUN and |¥(w) | = m.Thus, ¥ is a 1-1 function
mapping (M) into (M U N)™, which proves 2" < m!™,
To prove the second implication we note that if m >0 and 2" = mt"™

then m'™ > 1. Therefore, by 2.40, Ny < m
The last result of this section strengthens Cantor’s theorem that m < 2™,

THEOREM 2.42. N, < m — (Vke o)km < m™,

Proor. Let My, M, -+, M, be k + 1 pairwise disjoint sets such that |M,~| =m
for all i £ k. Let w;e M, and ¢;: M; ® M, for each i =1,2,.--,k. For each
ueM;, i=1,2,---,k, we define

Pu) = (Mo {u}] ~ {dw)}.
Then ¥ isa 1-1 function from M = M, UM, U - U M,into (M, U {u;, -, u,})
and since X, < m, |M0U{u1,---,uk}| = m. Moreover, [‘I’(u)| = m for each
ueM. Thus km < m'™,

Suppose km = m™. Then, since km < 2km < m™

, we would have km =2km.
By Tarski’s cancellation theorem this implies m = 2m. But if m = 2m, by 2.41,
2™ = m" and m = 2™ which contradicts Cantor’s theorem.

3. Specker [14] proves the following interesting results. Let G(m) be the
generalized continuum hypotheses for m. That is,

G(m): (@p)(m <p<2M)
THEOREM 3.1. If m = 5 then 2™ £ m® and if m is infinite then
(@) G(m)—> Ry S m
(b) G(m)->m =2m.
() G(m)—-m = m?.
(d) (G(m) & G(2™)) - 2" = N(m).
(e) (G(m) & G(2™) —» m is an aleph.

Proor. Specker [14].
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Whether G(m) implies that m is an aleph is an open question. It was already
known in 1926 [7] that G(m), G(2™) and G(22m) imply that m is an aleph. (Later
proved by Sierpinski [12].)

Consider the following proposition.

Gy(m): @p) (m <p<m™).
THEOREM 3.2. (m is infinite & € G(m)) « (Ny = m & G,(m)).

Proor. Clearly G(m) implies G,(m) and if m is infinite, then by 3.1(a), G(m)
implies Ry < m.

Conversely, suppose X, < m and G,(m). By 2.35 mI*1 £ m!™, and by 2.12,
km < m!? for all kew. Thus,

m < 2m £ 4m < m* < mlm,

The theorem follows from Tarski’s cancellation law and 2.41.
Tarski [20] proved the following lemma.

LemMA 3.3. If ¥y £ mthen m <m + ¥(m) and (Ap)(m < p < m + N(m)).
Consider the following proposition:
H(m): (Ap)(R(m) < p <m + N(m)).
LeMMA 3.4. If m is infinite and 0 < ke w then Hm***) - H(m").
Proor. 1.1(e).
THEOREM 3.5. If m is infinite then H(m*) -» m = m?.
Proor. First, we have
) m £ m? <m®+ X(m).

Also,
R(m?) = R(m) £ m + X(m) £ m? + X(m)

Thus, H(m?) implies

(1) R(m) = m + N(m)
or
(I11) m + R(m) = m? + N(m).

From (IT) we obtain m is an aleph. From (III)and (I) we get m < m* < m + N(m),
and from III, X, £ m. Thus. using 3.3, we obtain m = m?2.

Clearly, if m is an aleph, then H(m) holds. However, if X is consistent then
m = m? doesnot imply H(m). For let n be an infinite cardinal so that Ny £ n
and let m = n° . Then m = m? and we claim
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N(m) < n + R(m) < m + N(m).
It is clearly true that
N(m) £ n+ N(m) £ m+ N(m).

If either of the equality signs hold it is easy to obtain a contradiction.

Assuming the consistency of £ we can also prove that H(m) does not imply
No <*m. It follows from 1.2 and the discussion that follows 1.2 that there is
an infinite cardinal m such that X, £ *m and there do not exist infinite cardinals
p and ¢ such that m = p+¢q. Let m be such a cardinal. Then N(m) = ¥,.
Suppose

IV) Ny =Nm)<n<m+ R(m) =m+ N,.

Then there exist cardinals p < m and ¢ £ Ny such that n = p+q. If ¢ < N,

then ¥y £ p £ m which is a contradiction. If g = N, then either p is finite and

n = N, or pis infinite and there is a finite p, such that p + p; = m. In this case

n=p+ Ny =m+ R,. Thus (IV) is false, so H(m) is true, but 8y £ *m.
Now let us consider the statements

H(m): @p) (m<p<m?)
H,(m): (Zp) (m < p < 2m).

Clearly if m>1,
m=m?>—> H,(m)—>m = 2m
and
m = 2m - H,(m) > R, £ m.

However, if £ is consistent, m = 2m does not imply H,(m). For let p be an
infinite cardinal such that N, £ p and such that Ng - p < ¥4+ p*. (See 1.2). Then,
if m = Ny p, m = 2m and it is easy to show that m < m 4 p* < m?.

Similarly, there is an infinite cardinal p such that Ny, £ p and
No +2p < Ny +3p < X +4p (see 1.2). Thus if m = Ny +2p then Ny < m
but H,(m) is false.

In the last part of this section we shall extend some results of Kruse [5] and [6].

DEFINITION 3.6. If [M| = m,

@ WM ={f|G)f:03M}; W) | = wim).

(b) W'(M)={R = Mx M|R well-orders Z(R)}.

(©) S(M)={u=M|@3R s u xu) R well-orders u} ; | S(M)|=s(m).
@) SM) ={uc M||Guxa}.
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W is the function defined by Kruse [5]. W(M) is the set of all well-ordered
sequences, without repetition, of elements of M. W’'(M) is the set of all relations
which well-order a subset of M. S(M) and S’'(M) are the set of all subsets of M
which can be well-ordered.

LeEmMa 3.7.

(@) WMz W'(M).

(b S(M) = S'(M).

Thus it follows from 3.6 and 3.7 that |W(M)| = |W’(M)| = w(m) and
[(SOD)]| = [S'31)| = s(m).

The following two functions are defined by Kruse [5].

DEeFINITION 3.8.
(@) ¢y W(M) » W'(M)
where for each fe W(M), ¢,(f) = R where R is the well-ordering relation such
that 2(R) = %(f) and (Vu,ve Z(R)) <u,v)eR if and only if f~*(u) < f~(v).
(b) ¢,: WM) - P(P(M))
where for each fe W(M), ¢,(f) = {u:u is an initial segment of ¢,( f)} U {Z(f)}.
It is easy to show that ¢, and ¢, are 1-1 functions.

Lemma 3.9.

@) ¢ WM)= WM = ZM x M).

(b) ¢, W(M) S P(PM)).

The next lemma follows easily from 3.6 and 3.9.

Lemma 3.10.

(@) m < wim) < 2™,

(b) m < wim) < 22",

(c) m<s(m)g2".

Moreover, we have

Lemma 3.11.

(@) m<w(m).

(b m<s(m).

Proor. The proof of (a) is given by Kruse [5] p. 546, and that of (b) by Tarski

[18] p. 179.
The next lemma gives some monotonicity laws for w and s. The proof follows

directly from 3.6.
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LemMMA 3.12.

(@ m=n->wm) < wn).

(b) m = n-s(m)=s(n).

Lemma 3.13.

(a) If m is infinite, N(m) <* w(m).

(b) s(m) <* wim).

(¢) If m is infiinte, N(w(m)) £ RQ™).

PrOOF. Suppose |M| = m. Then if fe W(M), define

¥,() = 2(f), Yaof) = %(f).
Then ¥, is a function mapping W(M) onto N(M) and ¥, is a function mapping
W(M) onto S(M).
The proof of (c) is given by Kruse [5] p. 547.

THEOREM 3.14. If m is an aleph, then

(a) w(m)=2".

(b) s(m) =2".

Proofr. The proof of (a) is due to Kruse, but we shall sketch it here. It follows
from the hypothesis that m = m?. Therefore, by 3.10(a), w(m) < 2™. To get
the inequality the other way, let R be a relation which well-orders M, where
| M| = m. Let u be any subset of M. Then there exists a unique ordinal number o
and a unique function f such that f: «  u and f preserves order. Define W(u)
= f. Then ¥ is a 1-1 function mapping 2(M) into W(M).

The proof of (b) follows directly from 3.6(c).

Some additional properties of Kruse’s function are given in the following
lemma.

Lemma 3.15.
(@) w(m)-wn) < wim+n)
(®) (Vkew)w(km) 2 [wm)]*.

Proor. The proof of (a) is given by Kruse [6] p. 137, and (b) follows from (a).

THEOREM 3.16.

@) No < m—wm)=2"°-w(m).

(b) m =2m - wim) = [w(m)]*.

Proor.

@ 2% -wm) = w(Ne)w(m) [3.14(2)]
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< wim + Rp) [3.15]
= w(m) [Hyp]
(b) [w(m)]* < w(2m) [3.15(b)]
= w(m) [Hyp.].

THEOREM 3.17.
(a) G(m)— s(m) =27,
(b) G(m) > w(m) = 2".
Proor. (a) 3.10(c) and 3.11(b).
(b) 3.1(c), 3.10(a), and 3.11(a).

TueorReM 3.18. Each of the following are equivalent:
1) N =m.

(2) No = wim).

3 wim)y=wim)+m&mz=0.

(4) w(m) = 2w(m).

(5) w(m) = 2°w(m).

6) wim)=m- -wim)&m # 1

Proor. Clearly, if m = 2.

oMo

m<wim) < wim)+1 < wim) +m < 2w(m) { - w(m)

m - w(m)

Therefore,

6 ->@H->03)—>2)~1)
and

B-BH->03)~-~1).
In 3.16(a) we proved (1) — (5). Therefore, it remains to be shown that (1) — (6).

Suppose N, < m and let ( M | = m. For each ue M, let ¢, be a 1-1 function

mapping M onto M ~ {u}. For each fe W(M), define ¢,(f) to be the function g
such that g(0) = u, gla + 1) = ¢, (f(»)) if xcw, and g(«) = ¢,(f(¢)) if & = .
Thus, if fe WM), ¢.(f)e W(M). Moreover, if fi, e W(M), f; #f, then

¢.(f) # ¢.(f>) because ¢, is 1-1 on M.
Now we define a function ¥ on M x W(M) to W(M) as follows: for each

u,freM x W(M),
Y(u.f) = ¢f)-
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Then ¥ is a 1-1 function from M x W(M) into W(M), so m-w(m) < w(m).
Kruse [5] p. 549 proves the following results which extend properties of Hartog’s
N-function. (see 1.1(f), (g)).

Lemma 3.19. If m is infinite

(@) m?- X(m) <*2™

(b) 2™ N(m) <*2*"

We shall show we can obtain somewhat similar results if ““N(m)’’ is replaced
by “w(m)”. Tt is clear that if ¥, < m, then 2"-2%" = 2*". Also, it follows
from 3.18 that N, < m implies m? - w(m) = w(m). Therefore, using 3.10(a)
and (b) we obtain,

THEOREM 3.20. If R, < m then

(@) m?-w(m) 2™

(b) 2™-w(m) <2*".

However, we shall show that the second inequality holds for all infinite m.

THEOREM 3.21. If m is infinite then

2™ w(m) < 22"

ProoF. If R, < m the theorem follows from 3.20(b), so suppose m is infinite

but Xy £ m. Let IMl = m. Define a function
¥Y: 2(M) x W(M) - P(P(M))
as follows. If N € M and fe W(M),
Y(N.f) = d2(f) U {M ~ {u} | ue N}

(¢, is defined in 3.8). Let

Py ={M~{u} |uen}

Every element of ¢,(f) is a well-ordered set while M ~ {u} is not well-ordered
for any u. Thus, ¢,(f)NPy = @foreach N = M, ¢,(f) uniquely determines f,
and Py uniquely determines N. Therefore ¥ is 1-1 and 2"w(m) <2*".

Next, we will show that the function s has some properties similar to w.

LEMMA 3.22.
(@) s(m)-s(n) = s(m + n)
(b) (Vkew)s(km) 2 [s(m)]*

ProoF. Similar to the Proof of 3.15.
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THEOREM 3.23.

(@) No £ m—>s(m)=2"s(m)

(b) m =2m - s(m) = [s(m)]*.

Proor. Similar to the proof of 3.16.

Suppose Hy(m) and H,(m) are the following propositions,

Hy(m): (#p) (m < p < w(m))
and
Hy(m): (7Zp) (m < p < s(m))

Since it is easy to prove thatform = 2, m < 2m < w(m)and m < 2m < s(m),
the following theorem follows from 3.11,

THEOREM 3.24. If m = 2

(@) Hi(m)->m = 2m.

(b) Hy(m)—->m =2m.

LemMa 3.25. If m is infinite,

(@) (Vkew)m* < wim).

(b) LO(m) — (Vke o)ym* < s(m).

Proor. Clearly f(m) < w(m). Thus (a) follows from 2.5.
Similarly, e(m) £ s(m), so (b) follows from 2.15.

THEOREM 3.26. If m is infinite,
(a) Hy(m) » m? = m3.
(b) LO(m) - (H,(m) » m* = m3).
Proor. (a) It follows from 3.25(a) that H,(m) implies either m = m? or
m? = w(m). Clearly m = m? implies m? = m3.
The proof of (b) is analogous, using 3.25(b) instead of 3.25(a).
Note. The referee has commented that Mr. John Truss of Leeds University,
England, has proved the following theorem:
If m is infinite then w(m) £ m* and s(m) £ m"* for every ke .
The proof uses a method similar to that used by Specker in the Proof of 3.1.
Thus, it follows that 3.25 and 3.26 can be strengthened to the following:
If m is infinite then
(Vk € @)m* < w(m).
LO(m) - (Vk € w)m* < s(m).
H,(m)—»m = m?.
LO(m) - (Hy,(m) > m = m?).
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