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ABSTRACT 

Let E be some standard set theory (Eg. Zermelo Fraenkel or Von Neumann- 
Bemays-Godel) which does not contain the axiom of choice. Using Z as the 
underlying set theory, we shall study operations on infinite cardinals, closely 
related to exponentiation, and compare the results with known results about 
exponentiation. 

Introduction 

Let I2 be some standard set theory (Eg. Zermelo-Fraenkel or Von Neuman- 

Bernays-G6del) which does not contain the axiom of choice. Using Z as the 

underlying set theory, we shall study operations on infinite cardinals, closely 

related to exponentiation, and compare the results with known results about 

exponentiation. 

The paper is divided into three sections. The first contains notation and pre- 

liminary remarks; the second is based on the work of Tarski [7], [18], and [19]; 

and the third is based on the work of Specker [14] and Kruse [5] and [6]. 

1. We assume the reader is familiar with the standard notation of set theory. 

In particular we shall use the following notation: 

M ~ N iff there is a 1-1 function mapping M into N. ([ M[ < IN I)" 

E(M) is the set of all finite subsets of M. If IMI = m then, I = e(m). 

N(M) = {~1~ is an ordinal number and ~ ~ M}. 

* I should like to take this opportunity to thank both my husband, Herman and my son, 
Arthur, for their help in preparing this paper. 
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If  I MI = m, I N(M) I = (Hartog's aleph.) 

M ~<* N i f M  = ~ or there is a function mapping N onto M.  

If  [M I = m and IN[ = n then m < * n  iff M ~ * N .  

We shall also assume the following properties of < * ,  N, and e. (See [7] 

and [3]). 

THEOREM 1.1. 

(a) I f  m < n then m <=*n. 

(b) I f  m < * n  then 2 'n < 2 " .  

(c) I f  m is infinite, N(m) is the smallest aleph which is not < to m .  

(d) If  m and n are infinite then, 

N ( m + n )  = N(m)+ N(n) = N(m.n )  = N(m). N(n). 

(e) I f  m is infinite, N(m 2) = N(m). 

(f) N ( m ) < * 2  ~2. 

(g) N ( m ) < * 2  z"l. 
(h) N(}L)= 
( i )  N~+ 1 < ' 2  % . 

(j) m < e(m) < 2 m. 

(k) e (No)= N O . 

(1) e(m + n) = e(m).  e(n). 

(m) No • e(m) = No" e(km),  for all k e o9,~ {0}, provided that every set with 

cardinal number m can be linearly ordered. 

Moreover, we shall assume familiarity with the standard Cohen models of set 

theory in which the axiom of choice is false [2] pp. 136-142. (Alternatively, the 

Fraenkel-Mostowski model [9].) Specifically, we shall use the following prop- 

erties. 

THEOREM 1.2. I f E  is consistent, there exists a model of Z in which every set 

can be linearly ordered and there is an infinite cardinal number m with the 

following properties: 

(a) No ~*  m. (Consequently, N O ~ m.) 

(b) 2 m ~  m +  No. 

(C) 2m 2 ~ m 2 + No.m. 

(d) m + N o < 2 m + N o < 3 m + N  o < . . . .  

(e) N; o 'm  < No" m2 < No" m3 < ' " .  

PROOf. We obtain the model by adding the following sets to the Cohen hier- 
archy (see [2] p. 142): 
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A = {a,,, l m,  n ~ co}, the a,,, are generic subsets of co, 

A,,= {a,,,]n~co}, 
M = {AmlmEco} ,  

N = { { a " , a . } l m ,  n co } ,  and 

R is a linear ordering of M of type t/, the order type of the rationals. 

Let [M l= m. Then it is easy to show that if No _-<*m then No < m.  But 

using Cohen's method, it can be shown that the latter property implies a contra- 

diction. 

Parts (d) and (e) follow from (b) and (c) respectively, and (b) and (c) follow 

from (a) and the definition of m. 

Now, let LO(m), INF(m) and AC(e(m)) be the following three statements: 

LO(m): Every set with cardinal number m can be linearly ordered. (The ordering 

principle). 

INF(m): There exists infinite cardinals p and q such that m = p + q.  

AC(e(m)): There is a choice function on E(M), for all sets M of cardinality m. 

It is known that i f£  is consistent neither of these three propositions are provable. 

(To see this, omit the sets N and R in the construction of the model in the Proof  

of 1.2.) It is also easy to show that N _<* m implies INF(m), LO(m) implies 

AC(e(m)), and if m is infinite, LO(m) implies 1NF(m). In Sections 2 and 3 we 

use LO(m) in the hypotheses of theorems where it would have been sufficient to 

use AC(e(m)). (Referee's comment) see Lemma 2.6 ft. 

The following theorem is due to Tarski and Kuratowski [15] and [7]. 

THEOREM 1.3. No <*  m iff No < 2" .  

PROOF. It follows from 1.1 (b) that if b~ o <*  m then b~o < 2" .  The proof  

the other way is given in [15] pp. 94-95. 

The following implications clearly hold for all m > 0. 

m = 2m ~ (2") 2 = 2" 

i'~ o < m - o 2 " 2 "  = 2".  

But, if £ is consistent, the arrows do not go the other way. The proof  of this 

depends on the following result of Lauchli [8]. 

THEOREM 1.4. If m is infinite then (U(")) % = 2 ~("). 

There exist models of Z in which e(m) is infinite but No 5; e(m), [2]. 

2. We now make the following definitions. 

DEFINITION 2.1. If  I M[ = m and IN I = n,  
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(a) M (N) = { f l f :  N ~ M}; [M(N)[ -- ,,'"~. 
(b) S in]=  {uC M I [u I --- n}; [MtU~[ = ,n I"~ 

(c) M<N>= {u ~ M I [u[ < n}; [M<N>I = m <"~. 
<d) M<<N>>= {u _ M I lul z n}; IM <<u>>l-- m<<">>" 
M N is the set of  all functions mapping N into M ([ M N] = m"), while M (N) 

is the set of all 1-1 functions mapping N into M.  

The following lemma follows easily from 2.1. 

LEMMA 2.2. 
(a) M IN1 w M <N> = M <(N)) 

(b) M (N) ~_ M N 

(c) M<<M>>= ~(M)  

(d) I f  M I ~ M2 then MCa N) ~ M( f  ), M~N1~ M tN~, M~ N> ~ M~ n>, and 

M~<N>>~ M<2<N>>. 

First, we shall study these pseudo-exponentiation operations for the case that 

the exponent is finite. We have defined E(M) to be the set of all finite subsets of 

M.  We shall define F(M) to be the set of  all finite sequences of elements of M 

without repetition and FF(M) to be the set of all finite sequences of elements 

of M.  

DEFINITION 2.3. If  lM[ = m, 

(a) F(M) = U M(°,  where M ( ° ) =  { ~ } ;  IF(M)[ = f ( m ) .  

(b) FF(M) = L.J Mi, where M ° = { ~ } ;  I FF(M)] = i f ( m ) .  

Some of the following results can be found in Ellentuck [3"]. 

LEMMA 2.4. I f  re>O,  

(a) f f ( m )  = f f ( f f ( m ) )  = N O . f f ( m ) .  

(b) f f ( m )  = N o ' e ( m ) .  

PROOF. Ellentuck [3] p. 246. 

LEMMA 2.5. I f  m is infinite, then m k < f (m) . for  all k e o~. 

PROOF. Let I MI = m. The lemma is true if k = 0 so suppose 1 < k e  co. 

Let vij, wij, 1 < i < k,  1 < j < 2k be 4k 2 distinct elements of  M and let 

u = (u l ,  u2 , " ' ,  uk ) be any element of M k . Suppose ul, u2,'. ' ,  u j_ 1 are all distinct 

and uj = u s for 1 < i < j  < k. Then replace uj by the first vi~, l = 1 ,2 , . - . ,2k,  
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which is distinct from Ul,U2,"',Uk. Let w~h be the first w~z, l = 1 ,2 , . . . ,2k ,  

which is distinct from U~,Uz,"',Uk. 
Suppose the next repetition occurs at the j~-st coordinate and suppose il is the 

smallest i so that u~ = uj~, 1 < i < j l  < k. Replace u~l by the first v~l,~, 

l = 1 ,2 , . . . ,2k ,  which is distinct from UI,U2,"',Uk and let wj,,~ 2 be the first 

Wh i, l = 1,2, . .- ,2k, which is distinct from ul,u2, "",Uk. Continue this process 

until all repetitions are eliminated. 

Let us illustrate what is going on by an example. Suppose k = 5 and 

u = ( v ~ , w l l , v l l , v l l , w l ~ ) .  Then we shall map u onto the element (~)ll, Wll, 

vlz, vx3, vzl, w31, w41, wsl) .  The element @11, w11, v11, v11, v21) ~Mk would be 

mapped on (v ~ ,  w~,  v12, v~3, Vzl, w31, w4~). So the first subscript on the w's 

tells us which coordinates have been replaced and the first subscript on the v's 

tells us which element was there originally. Thus we have constructed a 1-1 

mapping of M ~ into F(M). 

In many of the following theorems we assume LO(m) in the hypothesis. A 

typical way in which it is used is illustrated in the following. 

LEMMA 2.6. LO(m) ~ (Ykeco)m [k] =< m (k). 

PROOF. The conclusion holds without LO(m) if m ___ 1 or k < 1. So suppose 

both rn and k are greater than 1. Suppose I MI = m and let u =  {Ul,U2, "",Uk} 

M m. Suppose R is a linear ordering of M and suppose also 

u l R u 2 R . . . R u  k. 

Then define ~b(u) = (u~,u2, " ' ,uk) .  It is easy to see that ~b is a 1-1 mapping of 

M ckJ into M (k). 

Alternatively, to prove the lemma we could have used AC(e(m)) to define 

q~(u). For  each u e M m let 

¢ ~ ( u )  e u ,  ~,2(u) e u ~ {0~(u)} ,  "',  ~ ( u )  ~ u ~ {~ , (u ) ,  . . . ,  0~- ~(u)}.  

Then let ~b(u)= ( ¢ l ( u ) , " ' , ~ k ( u ) ) .  Thus, LO(m) is used as a substitute for 

AC(e(m)). 

LEMMA 2.7. LO(m) ~ (Yk ~ oo)LO(m m) . 

PROOF. Suppose I M] = m, then M ~kl can be linearly ordered, for example, 

by the lexicographical ordering. 

THEOREM 2.8. I f  LO(m) then each of the following are equivalent. 

(1) ~0 ---< m 
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(2) e(m) = f ( m )  

(3) e(m) = f f ( m ) .  

PROOF. Using 2.2(b) and 2.6, it is easy to show that ( 3 ) ~  (2). Clearly, 

e(m) <= e(m) + 1 <= f ( m ) .  Thus, (2) implies No < e(m), and this along with 

LO(m) implies (1). Finally (1) implies 

e(m) = e(m + No) 

= N o ' e ( m )  1.1(k)(1) 

= f f ( m ) .  2.4(b) 

Therefore, (1) -~ (3). 

Without using LO(m) we can prove the following: 

THEOREM 2.9. I f  1 < k < co then the following are equivalent. 

(1) No _-< m 
(2) m k = m (k) and m > 1. 

PROOF. Suppose No _-< m. Then it is easy to show that 

m (k) __< m k < (m + No) (k) = m (k) 

(See Ellentuck [3] p. 255.) Thus ( 1 ) ~  (2). 

Conversely, suppose (2) holds. Then, since m (k) < m (k) + 1 < m k, it follows 

from (2) that No < m (k). But this implies No < m. 

No ~ m ~ ( V k e c o ) m  k = Z k  j=a Sik m°) ,  where the Sik are ]-EMMA 2.10. 

Stirling numbers 

_ j~ ~: (-1)  i J! ( ~ f  Sjg j!  i ! (]--- 1)' 
i = 0  

PROOF. For a proof of this for finite m see, for example, Harris [4] pp. 25-26. 

The proof is essentially the same for infinite m. 

LEMMA 2.11. I f j ,  k e m a n d m  >=jk + j  + k t h e n j . m [ k l < =  mtk+ll, provided 

that j , k  ¢ O. 

PROOF. Suppose IMI = m a n d u _  M w i t h l u l  = q, where q = j k + j + k .  

For all i = < q ,  
qU] _ q ! 

i ! ( q - - i ) ! "  

Thus, if i -<_ k, j • qV] =< q[~+l], provided that j ~ 0. Therefore, for each i <__ k 

there are j functions q~il, ¢,2, " " ,¢u  such that for each l, 1 _ 1 _< j ,  ~b n is 1-1, 

.@(~bis ) = u [q, ~(~bu) c_ u [ '+n ' and if I <= Jl <J2  ~ k then 
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Now we can construct j 1-1 functions from M tkl to M tk+11 with pair-wise 

disjoint ranges as follows: let X ~ M tkJ. Suppose v = X n u and ] v [ = i. Define, 

~t'~(X) = C d v )  u ( u  ,,, v ) .  

Then it follows from the definition of Ca that for each I, 1 _< I -< j ,  ~(W~) = M tkj 

~ (Wt ) -  c- Mtk+l],  Wl is 1-1, and the W,'s have pairwise disjoint ranges. 

COROLLARY 2.12. I f  m is inf ini te  then f o r  al l  j ,  k e o 2 ,  j m  tk] < m tk+ l]. 

LEMMA 2.13. L O ( m )  ~ (Vkeco)rn  (k) = k!  " rn tk] . 

PROOF. Ellentuck [3] p. 254. 

LEMMA 2.14. I f  m is inf ini te  then L O ( m )  ~ (Vkeoo)rn  k < m tk+~l. 

PROOF. If  N o < m, by 2.9, m k = m (k). By 2.13, m (k) = k ! m  tk]. Thus, the 

desired result follows from 2.12. 

If  No ~ m, by 2.10 

m k 

Therefore, it follows 
m k < imtk] < turk+ 1] 

k 

~, S m (j) jk 
j = l  

k 

= Z S j k j !m  tja [2.13] 
j = l  

from 2.12 that there is an leo9 such that 

COROLLARY 2.15. I f  m is inf inite then L O ( m )  ~ ( V k e c o ) m  k < e (m) .  

THEOREM 2.16. I f  L O ( m ) ,  m > 1, and  1 < k e o 9  then each o f  the f o l l o w i n g  

are  equ iva len t :  

(1) m k = 2 m  k 

(2) m (k) = 2 m  (k) 

(3) rn rkl = 2 m  rkl 

(4 )  m ~k) = m E~I 

(5) m k = m tkl . 

PROOF. First we note that (1) and (2) are equivalent because they each imply 

No < m which, by 2.9, implies m k = m (k). (Thus the equivalence of (1) and (2) 

does not depend on the assumption LO(m)) .  

The fact that (2) and (3) are equivalent follows from 2.13 and the Tarski can- 

cellation laws. ([7] p. 305 and [19]. If  1 < k < co then for all cardinals m and n 

i f k m = k n t h e n m = n . )  
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To prove (5) ~ (4) ~ (3) ~ (5) use 2.6, 2.2(b), 2.13, and 2.9. 

THEOREM 2.17. I f  L O ( m ) ,  m is in f in i te ,  a n d  k ~ co t h e n  each  o f  the  f o l l o w i n g  

a r e  e q u i v a l e n t .  

(1) m k = m k+l  

(2) m (k) = m (k+l) 

( 3 )  m t~l = m t ~ + l ~  

(4) e ( m ) =  m k. 

PROOF. The proof that (1) and (2) are equivalent is similar to the proof that 

(1) and (2) of 2.16 are equivalent and again does not use L O ( m ) .  

Suppose (2) holds. Then it follows from the monotonicity laws that for all j 

such that 1 < j ~ co, 

(I) m (k) = j .  m (k). 

By 2.13, we obtain from (2), 

k ! "  m tkl = (k  + 1)!. m tk+~l 

which implies, using (I) that 

(k + 1)! • m tkl = (k  + 1)! • m tk+~l 

Thus (3) is obtained by using Tarski's cancellation law. 

Before proving (3) implies (4) it is convenient to prove first that (3) implies (2) 

thus showing (1), (2) and (3) are all equivalent. First, we note that (3) implies 

that for all i, j ,  1 < i, j e co, 

(II) i" m tk] = j .  m tk]. 

Thus, 
(k + 1) !" m tk + 11 = ( k  + 1)!" m [k] (3) 

= k!  • m [k] (II) 
Therefore (2) follows from (2.13). 

By 2.15, m k <= e (m)  for all k e co. We shall show that (1) implies e (m)  <= in k. 

It follows from (1) that m k = m k+j for a l l j  e co. Since (1) and (3) are equivalent, 

it follows that rntk] = m [k+i] for all j e co. Therefore, 

e (m)  <= l + m + rn t 2 ] + . . . + N 0  mtk] 

= l + m + m  r 2 ] + . . . + m  [k] 

< (k + 1)m tk] [2.12] 

= m t~ (3) 

= m k [2.16]. 
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Finally, it follows from 2.15 that m k <= m k+l <= e(m).  Thus, it i seasyto see 

that (4) implies (1). 

COROLLARY 2.18. l f  LO(m) ,  m is infinite, and k ~ co then each of  the fo l lowing  

are equivalent:  

(1) m k =  m T M  

(2) e(m) = rn (k) 

(3) e(m) = m tkl. 

In ~ we can prove the following: 

m T M  = m k . m l 

( i n k ) l =  m k |  " 

The question arises whether we can prove similar laws for the other types of 

exponentiation defined in 2.1. The following theorems answer these questions 

in part. 

THEOREM 2.19. I f  L O ( m ) ,  m is infinite and 0 < k ,  leco  then each o f  the 

fo l lowing  are equivalent.  
(1) m k + l =  m tk+l]  

(2) m [k+l]  ~ m [k]"  m I l l .  

PROOF. It follows immediately from LO(m)  that m [ k + l ] ~  m [g]" m U] . We 

shall show (1) ~ m tkl" rn t° <= m tk+° . (1) implies 

m [k+l] ~ i n  T M  ~_ 172 k . iyl 1 " 

By 2.6, 

rn[k] .m Ill ~ m k . m I .  

Thus (1) ~ (2). 

Conversely,  suppose(2)holds .  L e t [ M ] = m a n d l e t u = { u l , u 2 , . . . , U k ,  V, ,V2, ' . . ,vl}  

_~ M, and [u [ = k + I. Suppose R linearly orders M and u l R u z R . . .  RukRv lRv2R 

• .. Rv I. Define 

 l(u) = ( { u l , u z , . . . , u k } ,  {vl ,  

 2(u) = 

Then q~l and q~2 are each 1-1 mappings of M E~+tl into MER~x M rll and 

~(~1)  ("1 ~ (~2 )  = ~ "  Thus 

2rn[k+t] < mrkl. mY1. 
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Therefore, (2) implies m tk+ll = 2m tk+q, which, by 2.16, implies (1). 

THEOREM 2.20. I f  LO(m) ,  m is infinite and 1 < k ,  l~co then each of  the 

fo l lowing are equivalent: 

(1) mkl= m tk'1 

(2) m tk'] = (mtkl) t'l 

(3) m [kl] = (m[k]) (I) 

(4) m [kl] -~ (m(k)) Ill 

(5) m tkt] = (mEg1) l 

(6) m Ekl] = (ink) vl 

We shall omit the proof  of this theorem and the next since the techniques used 

are similar to those used previously. 

THEOREM 2.21. I f  m is infinite and 1 < k ,  l ~ co then each of  the fo l lowing 

are equivalent. 

(1) No < m 
(2) m (k+l) = m(k)m (t) 

(3) m ~ =  (m~) ~. 
It is easy to obtain similar results for m (k> and m <<k>>, but instead we shall 

discuss pseudo-exponentiation when the exponent is infinite. 

LEMMA 2.22. I f  M is a set and S a heredi tary system of  subsets o f  M ,  (S 

is called heredi tary  if  every subset of  an element o f  S is an element  o f  S), then 

if lsl there is a subset N ~_ M such that N can be well-ordered and 

N ¢ S .  

PROOF. Tarski [18], p. 178. We shall sketch the proof  here because we want 

to generalize the lemma slightly and use essentially the same proof. 

Let ~b be a 1-1 function mapping S into M.  Define a function ~ on the class 

of ordinals such that for each ordinal ~, 

~(~) = ~" ~b(~"~) if ~"~ ~ S 

u ¢ M otherwise. 

Let ? be the smallest ordinal number 6 such that ~(6) = u. Then since q~ is 1-1, 

I ? is 1-1, so ~/"? is a subset of M which can be well-ordered and ~"~ ¢ S.  

Let us call a system of  sets "almost hereditary" if every well-ordered subset 

of an element is an element. Then using the same proof  as of 2.22 we can prove, 

COROLLARY 2.23. I f  M is a set and S an almost  heredi tary  system of  subsets 
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o f  M ,  then i f  IS]  < ] M  l,  there is a subset  N c  M such tha t  N can be well-  

ordered  and  N ¢ S .  

The following theorem follows f rom 2.22. 

THEOREM 2.24. I f  m > 1 then 

(a) I f  n > 2  and  rn <"> = m then there is an a leph,  N, such that  N < m 

and  N .t: n .  

(b) I f  n > 2 and  m <<">> = m then there is an a leph,  N, such that  N < m 

and  N 42 n .  (See  2.13 f o r  the def ini t ion o f  m <"> and  rn <<">>.) 

COROLLARY 2.25. I f  m > 1 and  m <"> = m then m is an aleph.  

We shall next consider  the relat ionship between m ~, m ("), m t"l, m <"> , and m <<">> . 

THEOREM 2.26. I f  m = m 2 and  0 < n < rn then m" < rn r"l. 

PROOF. I t  follows f rom the hypothesis  that  m = m . n .  Let ] M I =  m and 

I N [ =  n.  Then there is a 1-1 funct ion ~b such that  

~ : M x N  ~ M .  

I f  f ~  M N, define 

~ ( f )  = {~b(f(u), u) [ u ~ N} 

For  each f e  U N, V ( f )  __q M and [ ~P(f) [ = n .  Moreover ,  V is 1-1. Therefore ,  

m" <-- m ["1. 

In the case that  n is finite in 2.26, " m  = m 1 ' '  can be replaced by " m  = 2 m " ,  

because in this case m = 2m implies m = n • m .  

COROLLARY 2.27. I f  0 < m = 2m and  0 < n a ¢o then m"  < m t"l. 

COROLLARY 2.28. I f  m is inf inite and  n E ¢o then m r"l = m ~ m ~ = m .  

PROOF. The corol lary  is true if n = 0, 1. Suppose 1 < n6¢o .  By 2.12, 

2m < m c"~. Consequently,  rn t"l = m implies m = 2 m .  So, by 2.27, m" < rn C"1 . 

Therefore ,  m E"1 = m implies m" = m.  

THEOREM 2.29. I f  m is an a leph and  0 < n < m then m["l <= m ("). 

PROOF. Suppose [M[  = m ,  N o _ M ,  and  [N o[ = n .  Let  N be any subset  

o f  U such that  IN[  = n.  Define ~b(N) = f 6  M (N°) where f :  No ~ n and f pre-  

serves order.  Then q~ is a 1-1 funct ion mapp ing  M mj into M (m. (See [11] Theo rem 

7.4.5). 

THEOREM 2.30. I f  m is an a leph and  0 < n <_ ra then rn" = m (") = m t"l. 

PROOF. 2.26, 2.29 and 2.2 (b). 
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THEOREM 2.31. I f  m is an aleph and 0 < n < m then m <">< m ". 

PROOF. Let IM I -- m,  INI = n and suppose P _  M,  IPI  = p < , ,  Then 

P --~ N.  Let N '  be the smallest initial segment of N such that P ~ N ' .  Let f '  

be the 1-1 function which maps N '  onto P and preserves order. For u ~ N ,-~ N '  

define f ( u )  = Uo where Uo e P .  Let T(P)  = f ~J f ' .  Then ~ is a t-1 function 

mapping M <N> into M n.  

In the case that n is finite, we may replace "m is an aleph" in the hypothesis 

of 2.31 by " L O ( m ) " .  

COROLLARY 2.32. I f  LO(m) ,  n~co  and m is infinite then re<n><= mn. 

THEOREM 2.33. I f  m is an aleph and 0 < n < m then 

r a n =  re(n)= m((n>> = i n  In] " 

PROOF. By 2.30 

(I) m" = m (") = m tnJ. 

By 2.2 (a), m <<">> = m(">+ m t"l. So 

(II) rn t'J < m <<'>>. 

By 2.31, rn ("> -< rn"; by 2.29, rn t"l = rn('); and by 2.2 (b) rn (") <= m ' .  So, 

(III) m <<">> < m" + m" = m".  

The theorem follows from (I), (II), and (III). 

In the case the exponent is finite we get the following result. 

THEOREM 2.34. I f  0 < m = 2 m ,  LO(rn) ,  and n ~co then 

m n =  m (n) = m((n)) = m ~n].  

PROOF. 2.16, 2.32, and 2.2 (a). 

A special case of the following lemma was originally proved by the author 

(see 2.36) but subsequently the lemma was generalized by H. Rubin. We shall 

give the more general result here. 

L e m m a  2.35. / f  N o ' p  < n < m then rn tp~ < m t"~. 

PROOF. Suppose I MI = m, N M, IN l : n, and I RI = p. Suppose also 

that 
M = ( R  x co) u Q u T ,  N = ( R  x co) u Q  

where the sets R x co, Q, and T are pairwise disjoint. For  any (u,  k)  ~ R x co 

let f ( u ,  k)  = (u ,  2 k )  and let e~' be the set of  all odd natural numbers. 

Let P be any subset of M such that I P[ - p.  Define 
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~ ( P )  = (P  ~ T )  W (Q,-~ P)  U (R  x ¢o') u ( f ' P ~  ( R  x co ) ) .  

It  is easy to see that ~(P) _~ M and q~ is 1-1. To complete the proof  we must 

show l~(P)l = n. First, ]~(P)l _< n because ]P n r l  _-__ p, [Q-P]  ___< 10l,  
[R x co' I = N o ' P ,  and I f " P  n ( R  x m)l __< N o ' p .  Therefore, 

I (P)l p + l e [ +  Sop+ Sop; No p+ le l - -  n. 
On the other hand, qS] (P) I n because [ ( Q N P ) W  (R x {1}l > I el and 

IR x (co ' - -  {1}) I = Nop. 

COROLLARY 2.36. I f  p <-- n <-- m and  ei ther  p is f in i t e  and  No <= n ,  or p is an 

a leph  then m Epl <= m E"1. 

The following theorem is stated in Tarski [18-] without proof. As far as we know 

the proof  has not been published. 

THEOREM 2.37. I f  m > 1, n > N O and  m c"1 = m then there  is an a leph ,  

N, such  that  N <-_ m bu t  N • n .  

Proof. It  follows from the hypothesis and 2.36 that ra tPl= m for all 

p N n such that 1 __< p < co or p is an aleph. In particular, m t2~ = m .  By 2.12, 

2m _< m E21. Thus m = 2m,  so by 2.27, m 2 < rn t2~. This implies m = rn 2 . 

Now it follows that 

s -- {P ~ MI [el __< n s~([P I < co or IP[  is an aleph)} 

is an almost hereditary system of subsets of  M such that [ S[ = m.  (Because if 

P e S  and IPI  = p ,  m Cpl = m; so I s l  = m follows from the fact that m 2 = m. )  

Therefore it follows from 2.23 that there is a subset A c M such that A can be 

well ordered and A ~ S. Thus, [A I is an aleph such that I AI n and I AI --< m. 

COROLLARY 2.38. I f  m > 1, n > No and  rn t"~ = m then m" = m 

PROOF. In the proof  of  2.37 we showed that under the given hypothesis, 

m = m z . Thus the corollary follows from 2.26. 

COROLLARY 2.39. I f  m >  l , O < n  = 2 n ,  and  m r"l= m then rn (n) = m  and  

m ((n)) = m .  

PROOF. Suppose n = 2n and p _< n. Then it is easy to see that 

m p <_ m E2"l = rn E'1 = m .  (See the proof  of  2.35 and of 2.37.) Thus, for all 

p~< n,  rn rp l=  m and m =  m 2. Therefore, rn (~? = m  and m( ( ">>=m.  

The following theorem follows directly from the definition of m tml. 

THEOREM 2.40. N o =< m ~ rn Em~ > 1. 
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THEOREM 2.41. I f  m > 0 then 

m = 2m --+ 2 m = rn t"l --+ No =< m.  

PROOF. Clearly rn E"1 < 2 " .  We shall show 0 < m = 2m -+ 2"  = m c"1, thereby 

proving the first implication. Let M and N be sets such that I M I =  IN l =  m,  

M n N = ~ a n d  M u N ~ M .  Let ~ b : M ~ N .  For each u _ _ M ,  define 

V(u) = , ,  u {x N I x¢4/'u). 
Then for u c M ,  W(u)  c M v 3 N  and tW(u) I = re. Thus, W is a 1-1 function 

mapping ~a(M) into (M t3 N) t"l, which proves 2 " <  m t"l. 

To prove the second implication we note that if m > 0 and 2 " =  m tm~ 

then ra t"J>  1. Therefore, by 2.40, N O < m.  

The last result of this section strengthens Cantor 's  theorem that m < 2" .  

THEOREM 2.42. N O < m -~ (Vk ~ oo)km < m t"l. 

PROOF. Let M o , M  1, "" ,Mk be k + 1 pairwise disjoint sets such that IM, I = m 

for all i < k. Let u ~ s M i  and qSi: M~ ~ Mo for each i = 1 ,2 , . . . , k .  For  each 

u e M i ,  i = 1 , 2 , . . . , k ,  we define 

V(u) = (MoU {u,}] ~ {~,(u)}. 

Then q~ is a 1-1 function f rom M = M1 U M 2 k.) --- k) Mkinto ~ ( M o  tO {ua, "", Uk}) 

and since No < m,  IMo u{,1,.. . ,uk}l = m. Moreover,  [qJ(u)l = m for each 

u e M .  Thus k m <  m tml. 

Suppose k m =  m t"l. Then, since k m <  2k m < rn t"a, we would have k m = 2 k m .  

By Tarski 's  cancellation theorem this implies m = 2m.  But if  m = 2m,  by 2.41, 

2" = m t"l, and m = 2 ~ which contradicts Cantor 's  theorem. 

3. Specker [14] proves the following interesting results. Let G(m) be the 

generalized continuum hypotheses for m.  That  is, 

C(m): 

THEOREM 3.1. / f m  > 5 

(a) G(m) -~  No < m 

(b) G(m)--+ m = 2m.  

(c) G(m)--+ m = m 2. 

(d) 
(e) 

(~p)(m < p < 2 "r) 

then 2"~= m 2 and i f  m is infinite then 

(G(m) & c(2m))-+ 2 m = N(m). 

(G(m) & G(2m))~  m is an aleph. 

PROOF. Specker [143. 
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Whether G(m) implies that m is an aleph is an open question. It was already 

known in 1926 [-7] that G(m), G(2 m) and G(22m) imply that m is an aleph. (Later 

proved by Sierpinski [12].) 

Consider the following proposition. 

Gl(m): (~p) (m < p < total). 

THEOREM 3.2. (m is infinite & ~ G ( m ) ) ~  (No =< m & Gx(m)). 

PaOOF. Clearly G(m) implies G~(m) and if m is infinite, then by 3.1(a), G(m) 

implies No < m. 

Conversely, suppose No -<_ m and G:(rn). By 2.35 m [2] ~ m Ira], and by 2.12, 

km <= m t2~ for all k ~ co. Thus, 

m < 2m < 4m < m r2] < m ona . 

The theorem follows from Tarski's cancellation law and 2.41. 

Tarski [-20] proved the following lemma. 

LEMMA 3.3. / f  No<_ m t h e n m < m + N ( m )  a n d ( J p ) ( m < p < m + N ( m ) ) .  

Consider the following proposition: 

H(m): (~p)(N(m) < p < m + N(m)). 

LEMMA 3.4. I f  m is infinite and 0 < k~co then H(m k+l) -~ H(mk). 

PROOF. 1.1(e). 

TrIEOREM 3.5. I f  m is infinite then H(m 2) -~ m = m z . 

First, we have 

m__< m 2 < m  2 + N ( m ) .  

N(m a ) =  N ( m ) < m + N ( m ) < m  a + N ( m )  

PROOF. 

0) 

Also, 

Thus, H(m z) implies 

(II) 
or 

(IIl) 

N(m) = m + N(m) 

m + N ( m )  = m 2 + N ( m ) .  

From (II) we obtain m is an aleph. From (III) and (I) we get m =< m 2 < m + N (m), 

and from Ill,  N o -< m. Thus. using 3.3, we obtain m = m z. 

Clearly, if m is an aleph, then H(m) holds. However, if E is consistent then 

m = m z does not imply H(m). For let n be an infinite cardinal so that No ~ n 
t~ /T/2 

and let m = n o . Then m = and we claim 



Hi(m) :  

H2(m): 

Clearly if  m > 1, 
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N(m) < n + N(m) < m + N(rn). 

I t  is clearly true that 

N(m) < n + N(m) _< m + N(m). 

I f  either of the equality signs hold it is easy to obtain a contradiction. 

Assuming the consistency of 12 we can also prove that H ( m )  does not imply 

No =<* m.  It  follows from 1.2 and the discussion that follows 1.2 that there is 

an infinite cardinal m such that No $ *m and there do not exist infinite cardinals 

p and q such that m = p + q. Let m be such a cardinal. Then N(m) = N o . 

Suppose 

(IV) No = N ( m ) < n < m +  N(m) = m +  No. 

Then there exist cardinals p < m and q __< No such that n = p + q. I f  q < No 

then No =< P < m which is a contradiction. I f  q = N O then either p is finite and 

n = No or p is infinite and there is a finite Pl such that p + pl  = m.  In this case 

n = p + No = m + No. Thus (IV) is false, so H ( m )  is true, but N O $ *m. 

Now let us consider the statements 

(~p) (m < p < m ~) 

(~p) (m < p < 2m). 

and 

m = m 2 ~ H l ( m ) ~  m = 2m 

m = 2m ~ H2(m) ~ No < m .  

However, if I2 is consistent, m = 2m does not imply H l ( m  ).  For let p be an 

infinite cardinal such that No ;~ p and such that N O • p < N O • p2. (See 1.2). Then, 

i f m  = N o ' p ,  m = 2 m  and it is easy to show that m < m + p 2 < m  2. 

Similarly, there is an infinite cardinal p such that No ;~ p and 

N o + 2 p <  N O + 3 p <  N o + 4 p  (see 1.2). Thus if rn = N o + 2 p  then No < m 

but H2(m) is false. 

In the last part  of  this section we shall extend some results of  Kruse [5] and [6]. 

DEFINITION 3.6. I f  lM[ = m,  

(a) W ( M )  = { f  [ (3a)f :  a ~ M}; I W ( M )  [ = w(m) .  

(b) W ' ( M )  = {R ~_ M x M I R well-orders ~(R)} .  

(c) S(M)  = {u c_ M I (SR ~_ u X U) R well-orders u } ; l S ( M )  l=s(m).  

(d) S ' (M) = {u_c M l [ ( ~ a )  u ,~ a ) .  
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W is the function defined by Kruse [5]. W(M) is the set of all well-ordered 

sequences, without repetition, of elements of M. W'(M) is the set of all relations 

which well-order a subset of M.  S(M) and S'(M) are the set of all subsets of M 

which can be well-ordered. 

LEMMA 3.7. 

(a) W(M)~ W'(M). 

(b) S(M) = S'(M). 

Thus it follows from 3.6 and 3.7 that [W(M)] = [W'(M)] = w(m) and 

I(S(M)I = ]S'(M)[ = s(m). 

The following two functions are defined by Kruse [5]. 

DEFINITION 3.8. 

(a) 4 i :W(M) --* W'(M) 

where for each f e  W(M), 4i ( f )  = R where R is the well-ordering relation such 

that ~(R) = ~ ( f )  and (Vu, v e ~(R)) ( u , v ) e  R if and only if f - l ( u )  < f - l ( v ) .  

(b) ¢2 :W(M) -* ~(~(M))  

where for eachfe  W(M), 42(f) = {u: u is an initial segment of 41(f)} U {~(f)}. 

It is easy to show that 41 and 42 are 1-I functions. 

LEMMA 3.9. 

(a) 4i :  W(M) ~ W'(M) ~ N(M x M). 

(b) 42: W(M) ~ N(~M)).  

The next lemma follows easily from 3.6 and 3.9. 

LEMMA 3.10. 

(a) m <= w(m) < 2"'. 
(b) m < w(m) <- 22''. 

(c) m < s(m) <= 2 m. 

Moreover, we have 

LEMMA 3.11. 

(a) m <  w(m). 

(b) m <s(m).  

PROOF. The proof of (a) is given by Kruse [5] p. 546, and that of (b) by Tarski 

[18] p. 179. 

The next lemma gives some monotonicity laws for w and s. The proof follows 

directly from 3.6. 
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LEMMA 3.12. 

(a) m <_ n --, w ( m )  <= w(n) .  

(b) m <= n ~ s(m) <= s(n). 

LEMMA 3.13. 
(a) I f  rn is infinite, N(m) <__* w(m). 

(b) s(m) <*w(m). 

(c) I f  m is infiinte, N(w(m))< N(2m). 

PROOF. Suppose I MI-- m. Then i f f e  W(M), define 

T l ( f )  = ~ ( f ) ,  W2(f) = ~ ( f ) .  

Then q~l is a function mapping W(M) onto N(M) and W2 is a function mapping 

W(M) onto S(M). 

The proof of (c) is given by Kruse [5] p. 547. 

THEOREM 3.14. I f  m is an aleph, then 

(a) w(m) = 2 m. 

(b) s(m) = 2 m. 

PROOF. The proof of (a) is due to Kruse, but we shall sketch it here. It follows 

from the hypothesis that m = rn z . Therefore, by 3.10(a), w(m) =< 2". To get 

the inequality the other way, let R be a relation which well-orders M, where 

[ M [ = m. Let u be any subset of M.  Then there exists a unique ordinal number a 

and a unique function f such that f :  a g u and f preserves order. Define T(u) 

= f. Then W is a 1-1 function mapping ~(M) into W(M). 

The proof of (b) follows directly from 3.6(c). 

Some additional properties of Kruse's function are given in the following 

lemma. 

LEMMA 3.15. 

(a) w(m). w(n) < w(m + n) 

(b) (Vk e co) w(km) > [w(m)] k. 

PROOF. The proof of (a) is given by Kruse [6] p. 137, and (b) follows from (a). 

TrIEOREM 3.16. 

(a) N O < m ~ w ( m ) = 2  % ' w ( m ) .  

(b) m = 2m ~ w(m) = [w(m)] z. 

PROOF. 

(a) 2 % "w(m) = W(No)W(m) [3.14(a)] 
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< w(m + ~o) 

= w(m) 

(b) [w(m)] z < w(2m) 

= w(m) 

THEOREM 3.17. 

(a) G(m) ~ s(m) = 2". 

(b) G(m) --* w(m) = 2". 

PROOF. (a) 3.10(c) and 3.11(b). 

(b) 3.1(c), 3.10(a), and 3.11(a). 

TIaEOREM 3.18. Each of the following are equivalent: 

(1) N O < m.  

(2) N o < w(m). 

(3) w(m)= w ( m ) + m & m  ~ O .  
(4) w(m) = 2w(m). 

(5) w(m)= 2~°w(m). 

(6) w(m) = m " w(m) & m # 1 

PROOF. Clearly, if m > 2. 

Therefore, 

and 

m < w(m) =< w(m) + l =< w(m) + m < 2w(m) =< 

[3.15] 
[Hyp]  

[3.15(b)] 

[Hyp.] .  

2S °. w(m) 

• w(m) 

( 6 ) - + ( 4 ) ~ ( 3 ) - - - , ( 2 ) - + ( 1 )  

(5) ~ (4) ~ (3) ~ (2) ~ (1). 

In 3.16(a) we proved (1) ~ (5). Therefore, it remains to be shown that  (1) ~ (6). 

Suppose No < m and let [ M [ = m.  For each u e M ,  let q~u be a 1-1 function 

mapping M onto M ~ {u}. For  e a c h f e  W(M), define ~b,(f) to be the function g 

such that  g(0) = u,  g(c~ + 1) = ~bu(f(e)) if e e e), and g(c 0 = qS,,(f(c0) if  a > a~. 

Thus, if f e  W(M), ~b~(f) e W(M). Moreover,  if f l ,  f2 e W(M), . f l ¢  fz then 

~b,,(f0 ¢ q~u(f2) because q~,, is 1-1 on M .  

Now we define a function W on M x W(M) to W(M) as follows: for each 

( u , f )  ~ M x W(M), 

• (u,f) = $,,(f) .  
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Then W is a 1-1 function from m x W(M) into W(M), so m.w(m) < w(m). 

Kruse [-5] p. 549 proves the following results which extend properties of Hartog's 

N-function. (see 1.1(f), (g)). 

LEMMA 3.19. I f  m is infinite 

(a) m 2. N(m) <*  2 "2 

(b) 2 ' '  N(m) <*  2 z" 

We shall show we can obtain somewhat similar results if " N ( m ) "  is replaced 

by "w(m)".  It is clear that if No < m,  then 2 " .  22" = 22". Also, it follows 

from 3.18 that N o __< m implies m 2" w(m)= w(m). Therefore, using 3.10(a) 

and (b) we obtain, 

THEOREM 3.20. I f  NO < m then 

(a) m2.w(m)  < 2 "2 

(b) 2" .  w(m) < 22". 

However, we shall show that the second inequality holds for all infinite m. 

THEOREM 3.21. I f  m is infinite then 

2".  w(m) < 2 z'' 

PROOF. If  No < m the theorem follows from 3.20(b), so suppose m is infinite 

but No $ m .  Let ]M[ = m. Define a function 

W: ~ (M)  × W(M) ~ ~ ( ~ ( M ) )  

as follows. If  N ~ M and.f~ W(M), 

U?(N,f) = ~b2(f) t.) {M ,,~ {u} ] u ~ N} 

(q~2 is defined in 3.8). Let 

n~ = {M,-~ { u } [ u ~ N }  

Every element of q52(f) is a well-ordered set while M ~ {u} is not well-ordered 

for any u.  Thus, q~2(f) c3 PN = ¢i for each N _~ M,  q52 ( f )  uniquely determines f ,  

and P• uniquely determines N.  Therefore T is 1-1 and 2"w(m) <22" .  

Next, we will show that the function s has some properties similar to w. 

LEMMA 3.22. 

(a) s(m) " s(n) < s(m + n) 

(b) (VkeoJ)s(km) >__ Is(m)]* 

PROOF. Similar to the Proof  of 3.15. 
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THEOREM 3.23. 

(a) No < m ~ s(m) = 2 "0 .s(m) 

(b) m = 2m --. s(m) = [s(m)] 2 . 

PROOF. Similar to the proof  of  3.16. 

Suppose H3(m ) and H4(m)  are the following propositions, 

Ha(m):  (~p) (m < p < w(m))  

and 

H4(m): (~p) (m < p < s(m)) 

Since it is easy to prove that for m >= 2,  m < 2m < w(m) and m < 2m < s (m) ,  

the following theorem follows from 3.11. 

Tt4EOREt, i 3.24. I f  m > 2 

(a) n3(m ) ~ m = 2m.  

(b) a 4 ( m  ) ~ m = 2m.  

LEMMA 3.25. I f  m is infinite, 

(a) (Vk ~ o9) m k < w(m) .  

(b) LO(m)  ~ (Vke og)m k < s(m) .  

PROOF. Clearly f ( m )  < w(m) .  Thus (a) follows from 2.5. 

Similarly, e(m) <= s(m) ,  so (b) follows from 2.15. 

THEOREM 3.26. I f  rn is infinite, 

(a) Hz(m ) --* m 2 --- m a . 

(b) LO(m)  -,, (H4(m) -~ m 2 = m3). 

PROOF. (a) I t  follows from 3.25(a) that Ha(m) impl ies  either m = m 2 or 

m 2 = w(m) .  Clearly m = m 2 implies m 2 = m 3. 

The proof  of  (b) is analogous, using 3.25(b) instead of 3.25(a). 

Note. The referee has commented that Mr. John Truss of  Leeds University, 

England, has proved the following theorem: 

I f  m is infinite then w(m) ~ m k and s(m) $ m k for every k e co. 

The proof  uses a method similar to that used by Specker in the Proof  of  3.1. 

Thus, it follows that 3.25 and 3.26 can be strengthened to the following: 

I f  m is infinite then 

(Vk e og)m k < w(m) .  

LO(m)  ~ (Vk ~ og)m k < s(m) .  

H3(m ) ~ m = m z. 

LO(m)  ~ (H4(m) ~ m = m2). 
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